A finite element method with discontinuous rotations for the Mindlin–Reissner plate model
نویسندگان
چکیده
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملA Discontinuous Finite Element Method for Solving a Multiwell Problem
Abstract. Many physical materials of practical relevance can attain several variants of crystalline microstructure. The appropriate energy functional is necessarily non-convex, and the minimization of the functional becomes a challenging problem. A new numerical method based on discontinuous nite elements and a scaled energy functional is proposed. It exhibits excellent convergence behavior for...
متن کاملA Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...
متن کاملAsynchronous Parallel Discontinuous Finite Element Method
We describe a new iterative, asynchronous, parallel algorithm for the solution of partial diierential equations, based on discontin-uous nite-element methods. We use the domain-decomposition methods to decompose a large problem into a number of smaller problems that can be computed in parallel. These methods facilitate coarse-grain paral-lelism, which is important for exploiting parallelism eec...
متن کاملPreconditioning a mixed discontinuous finite element method for radiation diffusion
We propose a multilevel preconditioning strategy for the iterative solution of large sparse linear systems arising from a nite element discretization of the radiation di usion equations. In particular, these equations are solved using a mixed nite element scheme in order to make the discretization discontinuous, which is imposed by the application in which the di usion equation will be embedded...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2011
ISSN: 0045-7825
DOI: 10.1016/j.cma.2010.09.009